f2(x, empty) -> x
f2(empty, cons2(a, k)) -> f2(cons2(a, k), k)
f2(cons2(a, k), y) -> f2(y, k)
↳ QTRS
↳ DependencyPairsProof
f2(x, empty) -> x
f2(empty, cons2(a, k)) -> f2(cons2(a, k), k)
f2(cons2(a, k), y) -> f2(y, k)
F2(cons2(a, k), y) -> F2(y, k)
F2(empty, cons2(a, k)) -> F2(cons2(a, k), k)
f2(x, empty) -> x
f2(empty, cons2(a, k)) -> f2(cons2(a, k), k)
f2(cons2(a, k), y) -> f2(y, k)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
F2(cons2(a, k), y) -> F2(y, k)
F2(empty, cons2(a, k)) -> F2(cons2(a, k), k)
f2(x, empty) -> x
f2(empty, cons2(a, k)) -> f2(cons2(a, k), k)
f2(cons2(a, k), y) -> f2(y, k)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(empty, cons2(a, k)) -> F2(cons2(a, k), k)
Used ordering: Polynomial interpretation [21]:
F2(cons2(a, k), y) -> F2(y, k)
POL(F2(x1, x2)) = x1 + 2·x2
POL(cons2(x1, x2)) = x1·x2 + 2·x2
POL(empty) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
F2(cons2(a, k), y) -> F2(y, k)
f2(x, empty) -> x
f2(empty, cons2(a, k)) -> f2(cons2(a, k), k)
f2(cons2(a, k), y) -> f2(y, k)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(cons2(a, k), y) -> F2(y, k)
POL(F2(x1, x2)) = 2·x1 + 3·x1·x2 + 3·x2
POL(cons2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f2(x, empty) -> x
f2(empty, cons2(a, k)) -> f2(cons2(a, k), k)
f2(cons2(a, k), y) -> f2(y, k)